设A,B是两个n阶实对称矩阵,且A-B是正定的,K(A)表示A的所有k阶主子式的和,问是否有K(A)>K(B)?如果再加一个条件:A,B的所有i阶主子式的和大于0,i=1,2,...,k.结论会

设A,B是两个n阶实对称矩阵,且A-B是正定的,K(A)表示A的所有k阶主子式的和,问是否有K(A)>K(B)?如果再加一个条件:A,B的所有i阶主子式的和大于0,i=1,2,...,k.结论会怎样呢

问题描述:

设A,B是两个n阶实对称矩阵,且A-B是正定的,K(A)表示A的所有k阶主子式的和,问是否有K(A)>K(B)?
如果再加一个条件:A,B的所有i阶主子式的和大于0,i=1,2,...,k.结论会怎样呢?

最佳答案:

没有这样的结论
作为反例,可以取A,B为二阶对角矩阵;A的对角元为1、1,B为-10,-100;自然A-B是正定的,而它们所有二阶主子式即行列式有:K(A)=1det(U)这样,它们的和K(A)>K(B).

联系我们

联系我们

查看联系方式

邮箱: 2643773075@qq.com

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部