问题描述:
(2014•咸宁)如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AD⊥CD于点D.
(1)求证:AC平分∠DAB;
(2)若点E为
|
AB |
的中点,AD=
,AC=8,求AB和CE的长.
最佳答案: (1)证明:连接OC,
∵直线CD与⊙O相切于点C,
∴OC⊥CD,
∵AD⊥CD,
∴OC∥AD,
∴∠DAC=∠OCA,
∵OA=OC,
∴∠OCA=∠OAC,
∴∠OAC=∠DAC,
即AC平分∠DAB;
(2)连接BC,OE,过点A作AF⊥EC于点F,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ACB=∠ADC,
∵∠DAC=∠BAC,
∴△ADC∽△ACB,
∴
=
,
即
=
,
解得:AB=10,
∴BC=
=6,
∵点E为
|
AB |
的中点,
∴∠AOE=90°,
∴OE=OA=
AB=5,
∴AE=
=5
,
∵∠AEF=∠B(同弧所对圆周角相等),∠AFE=∠ACB=90°,
∴△ACB∽△AFE,
∴
=
=
,
∴
=
=
,
∴AF=4
作业帮用户 2016-11-19 问题解析 - (1)首先连接OC,由直线CD与⊙O相切于点C,AD⊥CD,易证得OC∥AD,继而可得AC平分∠DAB;
(2)首先连接BC,OE,过点A作AF⊥BC于点F,可证得△ADC∽△ACB,△ACB∽△AFE,△ACF是等腰直角三角形,然后由相似三角形的对应边成比例以及勾股定理,即可求得答案. 名师点评 -
本题考点: 切线的性质;勾股定理;等腰直角三角形;相似三角形的判定与性质. -
考点点评: 此题考查了切线的性质、相似三角形的判定与性质、勾股定理以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 扫描下载二维码 |