问题描述:
已知数列{an}满足3Sn=(n+2)an(n∈N*),其中Sn为{an}的前n项和,a1=2.(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记数列{
1 |
an |
1 |
10 |
最佳答案:
(1)由3Sn=(n+2)an得3Sn-1=(n+1)an-1(n≥2),
二式相减得3an=(n+2)an-(n+1)an-1f(x)
∴
an |
an-1 |
n+1 |
n-1 |
∴
an-1 |
an-2 |
n |
n-2 |
a3 |
a2 |
4 |
2 |
a2 |
a1 |
3 |
1 |
叠乘得an=n(n+1);
(2)
1 |
an |
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
∴Tn=1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
n |
1 |
n+1 |
n |
n+1 |
令|Tn-1|=|
n |
n+1 |
1 |
n+1 |
1 |
10 |
故满足条件的M存在,集合M={n|n>9,n∈N*}.