已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x-sinx,若不等式f(-4t)>f(2mt2+m)对任意实数t恒成立,则实数m的取值范围是.

已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x-sinx,若不等式f(-4t)>f(2mt2+m)对任意实数t恒成立,则实数m的取值范围是.

问题描述:

已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x-sinx,若不等式f(-4t)>f(2mt2+m)对任意实数t恒成立,则实数m的取值范围是___.

最佳答案:

由f(x)=x-sinx,可得f'(x)=1-cosx≥0,故f(x)在[0,+∞)上单调递增,再由奇函数的性质可知,f(x)在R上单调递增,由f(-4t)>f(2mt2+m),可得-4t>2mt2+m,即2mt2+4t+m<0,当m=0时,不等...

联系我们

联系我们

查看联系方式

邮箱: 2643773075@qq.com

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部