已知函数f(x)=sin(2x+π/6),若存在a∈(0,π),使得f(x+a)=f(x-a)恒成立,则a的值问下对称轴x=a怎么得出?为什么怎么代换都得不出对称轴x=a,只得到周期=2a,怎么换?

已知函数f(x)=sin(2x+π/6),若存在a∈(0,π),使得f(x+a)=f(x-a)恒成立,则a的值问下对称轴x=a怎么得出?为什么怎么代换都得不出对称轴x=a,只得到周期=2a,怎么换?

问题描述:

已知函数f(x)=sin(2x+π/6),若存在a∈(0,π),使得f(x+a)=f(x-a)恒成立,则a的值
问下对称轴x=a怎么得出?
为什么怎么代换都得不出对称轴x=a,只得到周期=2a,怎么换?

最佳答案:

f(x+a)=f(x-a)恒成立,则x=a为函数f(x)=sin(2x+π/6)的图象的对称轴,
所以,sin(2a+π/6)=1或 -1,得2a+π/6=kπ+π/2,即a=kπ/2+π/6,k为整数,
由a∈(0,π),得a=π/6或2π/3.

联系我们

联系我们

查看联系方式

邮箱: 2643773075@qq.com

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部