用洛必达法则求limx→∞(1+a/x)^x,

用洛必达法则求limx→∞(1+a/x)^x,

问题描述:

用洛必达法则求limx→∞(1+ a/x)^x,

最佳答案:

用洛必达法则求limx→∞(1+ a/x)^x,
=e^lim(x->∞) [ln(1+a/x)]/(1/x)] ,令1/x=t
=e^lim(t->0) [ln(1+at)]/t]
=e^lim(t->0) [1/(1+at) ×a]/1]
=e^(a/(1+0))
=e^a

联系我们

联系我们

查看联系方式

邮箱: 2643773075@qq.com

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部