问题描述:
1/(x^2+x)的前n项和最佳答案:
an=1/x(x+1)
=[(x+1)-x]/x(x+1)
=(x+1)/x(x+1)-x/x(x+1)
=1/x-1/(x+1)
所以Sn=1-1/2+1/2-1/3+……+1/x-1/(x+1)
=1-1/(x+1)
=x/(x+1)
1/(x^2+x)的前n项和
问题描述:
1/(x^2+x)的前n项和an=1/x(x+1)
=[(x+1)-x]/x(x+1)
=(x+1)/x(x+1)-x/x(x+1)
=1/x-1/(x+1)
所以Sn=1-1/2+1/2-1/3+……+1/x-1/(x+1)
=1-1/(x+1)
=x/(x+1)