问题描述:
已知AB//CD,BD平分角ABC,CE平分角DCF,角ACE=90度
最佳答案:
(1)BD∥CE.
理由:∵AB∥CD,
∴∠ABC=∠DCF,
∴BD平分∠ABC,CE平分∠DCF,
∴∠2=1/2∠ABC,∠4=1/2∠DCF,
∴∠2=∠4,
∴BD∥CE(同位角相等,两直线平行);
(2)AC⊥BD,
理由:∵BD∥CE,
∴∠DGC+∠ACE=180°,
∴∠ACE=90°,
∴∠DGC=180°-90°=90°,
即AC⊥BD.
解析:两条平行直线
可以得到:内错角相等,同旁内角互补,同位角相等
需要满足:内错角相等,或同旁内角互补,或同位角相相等(只需证明一个即可)