问题描述:
某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每辆汽车的进价与销售量有如下关系:若当月仅售出1辆汽车,则该辆汽车的进价为35万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,月底厂家根据销售量还会返利给销售公司,销售量在8辆以内(含8辆),每辆返利0.6万元;销售量在8辆以上,每辆返利1.2万元. (1)若该公司当月售出3辆汽车,则每辆汽车的进价为___万元; (2)如果汽车的售价为36万元/辆,该公司计划当月盈利10万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)
最佳答案:
(1)∵当月仅售出1辆汽车,则该辆汽车的进价为35万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,
∴该公司当月售出3辆汽车,则每辆汽车的进价为34.8元;
故答案为:34.8;
(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:
36-[35-0.1(x-1)]=(0.1x+0.9)(万元),
当0≤x≤8,根据题意,得x•(0.1x+0.9)+0.6x=10,
整理,得x2+15x-100=0,
解这个方程,得x1=-20(不合题意,舍去),x2=5,
当x>8时,根据题意,得x•(0.1x+0.9)+1.2x=10,
整理,得x2+21x-100=0,
解这个方程,得x1=-25(不合题意,舍去),x2=4,
因为4<8,所以x2=4舍去.
答:需要售出5部汽车.